Tags
2016, ESS Carl Sagan, ESS Queen Elizabeth II, Hohmann Transfer, JPL, NASA, space, space travel, spacecraft
Date: Year 1, Sur One, Sol 5 (1.1.5)
There are 36 Quill sections that will be included on the first mission to Mars on the ESS Carl Sagan. An additional 12 sections will make up the ESS Queen Elizabeth II. Since each Core section can hold up to 12 Quill sections, there will be a total of four Core sections, each with 12 Quills.

Planet positions when Mission 2016 reaches Mars
In addition to the Core/Quill sections there will be a Operations and Command section for each ship. There will also be two fuel storage sections, a pulse engine section (PE), a thrust absorption section (TAS). a chemical thrust engine section, four solar arrays, and a auxiliary engineering section for each ship.
The ESS Queen Elizabeth II will leave Earth orbit on 24 February and the ESS Carl Sagan will leave on 26 February. The unmanned Sagan will accelerate faster and overtake the QEII on 29 February. The two ships will then integrate into one ship over the next few days.
Because of the sectional design of the ships, each craft is named according to the designation of the command section, which is typically the leading section. In the case of integration of two ships, the command section that is: 1) part of the larger craft, 2) facing forward and, 3) is near the front of the craft, keeps its designation for the entire craft.
During this mission the ESS Carl Sagan will keep the designation through the entire mission. The command section for the ESS Queen Elizabeth II will be docked to the command section of the Sagan and serve as auxiliary command. At some point the command sections of the Sagan and the QEII will both return to Earth when the first crew rotations occur in late 2016 and throughout 2017.
It is important to note that while the Sagan and the QEII prepare to leave orbit, two more ships are being assembled for a Fall 2016 departure. At this time the plan is to send two craft to Mars approximately every six months for foreseeable future. Timing of each mission will depend on the needs of the Mars team and the location of Mars in relation to Earth.
Because we are no longer depending on the Hohmann Transfer, (using the minimum fuel to travel from Earth to Mars and back,) we have fewer issues with launch windows. The average speed of the ESS Carl Sagan will be about 150,000 km/hr. This will put it in orbit around Mars on 18 June.